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Asymptotic Solution for Pressurized Noncircular

Cylinders with Nonuniform Rings

Joseru E. FLAHERTY*
New York University, New York, N.Y.

W. P. Varakost
Polytechnic Institute of Brooklyn, Brooklyn, N.Y.

An asymptotic expansion procedure is used to analyze hydrostatically loaded noncircular
eylindrical shells. The asymptotic solution is combined with a solution for singly symmetric
oval rings with variable cross-sectional properties to obtain the solution for pressurized non-

circular cylinders with nonuniform rings.

Numerical results indicate that the maximum

stress in the ring-shell structure can be significantly reduced by appropriately varying the
ring depth while keeping the total volume constant.

Nomenclature

A* = area enclosed by oval

A,A;B;Ciby = complex functions of s, see Eqs. (44, 28a—c, and
38), respectively

c = [3(1 — »)] 712

€1,€2,C3 = constants

d,f = depth and flange width of tee-section ring, re-
spectively

E* = Young’s modulus of shell )

€24€5,€52 = axial, circumferential, and shear strains of the
median surface of the shell

ér = function defined by Eq. (33¢)

Fo, ... Fu = functions of s defined by Eqs. (64)

Jo, - fs = functions of s, see Egs. (61)

h = shell thickness

7 = (_1)1/ 2

J = integral operator defined by Eq. (65)

Ik = integers

K = parameter defined by Eq. (4b)

Ly, L = circumferential and axial lengths of the shell,
respectively

M. M,M,, = axial, circumferential, and twisting moment re-
sultants, respectively, in the shell

Nz NN = axial, circumferential, and in-plane shear stress

. resultants, respectively, in the shell

N,Q = functions defined by Eqgs. (33a,b), respectively

P = function defined by Eq. (59)

Pz,Ps,é:’sz, = complex functions defined by Eqs. (11)

RI} S:Rsx

(Q2)eit,(Nsz)ett = effective transverse shear and in-plane shear in
shell

Qr,Tr = values of (Q.)etr and (Ny)ets at * = Zr, TESpEC~
tively

Qo = uniform hydrostatic pressure

r = local radius of curvature of reference line

To = Lo/27r

S,Z = shear and radial interaction forces acting upon

reference line of ring, respectively
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Sr,Zr = total shear and radial forces acting on reference
line of the ring, respectively

Lty = thickness of web and flange of ring, respectively

Uy0,0 = axial, circumferential, and radially inward dis-
placement components of any point in the
shell

v,w = circumferential and radially inward displace-
ment components of a point on the reference
line of the ring, respectively

il = function of s, see Eqs. (32)

Z,8,2 = axial, circumferential, and radial coordinates of
a point in the shell

IR = L/2r¢

Z, = Jocation of centroid of ring

% = value of Z; for tee-section of uniform depth

a,B = axial coordinates equal to Kz and z/K, respec-
tively

) = tracer constant

€ = strain of a fiber along the reference line of the
ring

&5 = parameter used to specify the variation of 2,
see Kq. (69)

0 = angle between axis of symmetry and outer nor-
mal to reference line

KzyKsyKsz = curvature parameters of shell

A = complex function of s defined by Eq. (45)

v = Poisson’s ratio

£ = parameter that fixes the eccentricity of oval

P = r/r

Oy 05,05z = axial, circumfecential, and in-plane shear
stresses, respectively, in the shell

¥ = complex functions defined by Eqs. (14)

o = imaginary parts of ® and ¥, respectively

()* ) = dimensional counterpart of ( )

(Y, )4( )¢ = particular, interior, and edge part of ( )

) = complex conjugate of ( )

¢y = d( }/ds

= 0( )/0a

()
Re( ),Im( ) real and imaginary parts of ( ), respectively

Introduction

NVESTIGATIONS of the design and fabrication of sub-
mergence vehicles has led to a study of noneircular ring-
reinforced cylindrical shells. In this connection, the case of
a nonecircular cylinder with uniform reinforcing rings was
analyzed by both an energy approach,! in which energy solu-
tions for an oval eylinder? and an oval ring® were combined,
and by an asymptotic series approach.® These two ap-
proaches were in good agreement with available experimental
results.®s
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Fig. 1 Ring-reinforced oval eylinder.
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In addition to assuming that the cross-sectional properties
of both ring and shell are uniform, the theoretical work of
Refs. 1-5 assumes that the oval is doubly symmetric and has
the special mathematical form discussed in Ref. 7. In the
present work an asymptotic expansion procedure is applied to
a hydrostatically loaded oval cylindrical shell with nonuni-
form reinforeing rings. The analysis considers arbitrary
singly or doubly symmetric ovals of slow circumferential vari-
ation. The shell solution is combined with an appropriate
ring solution? to obtain the complete solution for a typical bay
of a long noncircular eylinder reinforced by many closely
spaced nonuniform rings (see Fig. 1). Numerical results
indicate that the maximum stress in the ring-shell structure
can be significantly reduced by appropriately varying the ring
depth while keeping the total volume constant.

The asymptotic expansion procedure, introduced® and later
extended™ by E. Reissner, is applicable to thin shells sub-
jected to loads having a slow circumferential variation.
More recently, Reissner and Simmonds!! have removed the
restriction of slow circumferential variation. The general
procedure®~!! for obtaining solutions to the governing partial
differential equations of thin shell theory is similar in many
respects to that proposed by Gol’denveizer.!?

Governing Equations and Boundary Conditions

In the present analysis, it is assumed that the behavior of
the cylindrical shell shown in Fig. 1 can be described by dif-
ferential equations of the Love type. A tracer is used to keep
account of the terms usually omitted in the more simple equa-
tions of the Donnell type. These equations can be cast into
a complex form which is concise and has the advantage of
halving the order of the governing partial differential equa-
tions.

In accordance with Love’s approximations, the stresses are
assumed to vary linearly through the shell wall of uniform
thickness %, hence

{06,060} = {No, NNt + @e*/W){M., MM} (1)

where 2* is a radially inward coordinate measured from the
median surface of the shell. The quantities o,, N, and M,
represent the total nondimensional axial stress, axial mem-
brane stress, and axial bending stress, respectively. They are
related to their corresponding dimensional quantities ¢.*,
N* and M * by

0. = 0:%/q0, No = No¥/qoh, Mo = M.*/qh*  (2a,b,c)

where ¢, is the applied uniform external pressure. Similar
expressions with subsecripts s and sz represent circumferential
and in-plane shear quantities, respectively (see Fig. 2). Here
and in what follows, an asterisk is used to denote a physical
rather than a nondimensional quantity.

The nondimensional membrane and bending stresses are
related to the median surface strain parameters e,, e, .., and
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curvature parameters ., x., x.. by the equations

N:: = 302(637 + 1/85), Ns = 3C2<63 + Vez) (3a,b)

N, = N = 3C*(1 — v)ew/2 (3¢)
M, = —3C0c, + vus)/2K*, M, = —3C(x: + vn,)/2K?
(3d,e)
M, = —M,, = —3CQ — v)x./2K? 3)
where v is Poissons’ ratio and K and C are defined as
C = [3(1 — »»]7V2, K2C = ro/h (4a,b)

Here, 75 is the radius of a reference circle whose circumference
Ly is equal to the length of the median line of the shell. The
strain and curvature parameters are related to the coorespond-
ing physical quantities as follows:

{€2,80,€52,90, 2002002} = E¥{e.* 0% 0 1o * 1ot * 1 *} /90 (B)

where E* is Young’s modulus of the shell.

The median surface strains and curvatures are related to
the nondimensional axial, circumferential, and radially inward
median surface displacement components u, v, w, respectively,
by the expressions

€r = Uu s =V, — WP, e = Us + v, (6a,b,c)

Hy = W, zxy, Hs = (w,s + 61)/}7),.;, sz = (w,-\r + 51)/[)),; (6d;e;f)

where z and s are nondimensional axial and circumferential
median surface coordinates (see Fig. 1), p is the nondimen-
sional circumferential local radius of curvature of the shell
median surface, & is a tracer constant which is unity for Love
type equations and zero for Donnell type equations, and a
comma indicates differentiation with respect to the variable
which it precedes. The nondimensional quantities are re-
lated to their dimensional counterparts by

{Z,S,p} = {.’E*,S*,T}/To, {u’vrw} = E*{u*)v*)w*}/QOTO (7ayb)

The use of the theorem of the minimum of the total poten-
tial together with Eqgs. (3) and (6) yields the following equi-
librium equations for the shell:

Neo+ Nezo =0 (8a)

Neo+ Neo — 6@Mo . + M, ,)/6pKC = 0 (8b)

M, oo + 2M e + M, + 6K2CN,/p = —6K4(C* (8c)
The nondimensional effective shear stresses, which arise in the

minimum principle and are to be used as natural boundary
conditions, are

(Qx)eff = (Mz,x + 2Ms:c,s)/6K20 (Qa)
(Nisz)ett = No» — 6M,./3K?Cp (9b)

where (Q.).r: and (N,,).rr have been nondimensionalized by
equations similar to Eq. (2b).

The system of equilibrium equations as well as the following
compatibility conditions can also be obtained by specializing
equations presented by Novozhilov!® for arbitrary shells re-
ferred to curvature coordinates:

s,z ™ MHsz,s = 0 (103)
Hr,s ™ Msz,z + 5<esz,x - ez,s)/P =0 (IOb)
€5,z — Csz,sz + €z,ss + %z/p =0 (100)

The preceding system of differential equations can be writ-
ten in a complex form by using the static-geometric analogy
introduced into shell theory by Gol’denveizer.!? Following
Naghdi,!* this is accomplished by introducing the following
complex functions:

P, = N, + ix;/2K? P, = N, + ©./2K? (11a,b)
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P,. = Noo — 0¢./2K2, R, = M. + 3iCe, (11lc,d)
R, = M, + 3iCe,, 2R,, = 2M,. — 3iCe,,  (1le,)

where 7 = (—1)¥2. The equations of compatibility, Eqgs.
(10), are now multiplied by 17/2K? and the results added to
the equilibrium equations, Eqs. (8). This yields, upon use of
Eqs. (11),

Pz,z + Psz,s = 0 (12&)

Ps,s + Psx.z: - 6(2Rsz,z + Rs,s)/ﬁpKZC =0 (12b)
Rx,zz + 2Rsz:,sz + Rs,ss + 6K2CP5/P = _6K4C2 (120)

The real and imaginary parts of the preceding equations yield
the equilibrium equations and compatibility equations, re-
spectively.

The quantities P,, Ps, P, and B, B, R, are not all inde-
pendent of each other but are related as follows through
Hooke’s Laws, Eqgs. (3):

R. = 3iC(P, — vP,), R, = 8i{C(P, — vP,) (13a,b)
R, = _37:O<Psx + Vpsx) (130)

where a bar over a quantity denotes its complex conjugate.
It is convenient in the present analysis to introduce com-
plex functions ® and ¥ defined such that

P =w+ 0, ¥ =104y
where ¢ and ¢ satisfy
N. = —(1/2K¥(p,: + 8¢¥/p).s,

(14a,b)

NS = _(1/2K2)¢,xx
(15a,b)
Noe = (1/2K%(¢,s + 8¢/p) - (15¢)

The use of Eqs. (6d—f, 11a—c, 14, and 15) shows that P., P, P,,
are related to @ and ¥ by

P, = (i/2K9)(®,, + 6¥/p).., P, = (5/2K)®.,, (16a,b)
Psx = _(i/sz)(é,s -I_ 6‘1’/P>,x (160)

Thus Eq. (12a) is satisfied identically. Equations (13) and
(16) are used to reduce Eqgs. (12b,c) to the following two
equations for the two unknowns ® and ¥:

W — B/p)oe + (1/2K)[®oe + v(®,s + 0¥/p) 5],z =
2K*C  (17a)
Vi + §vAH¥/p),. + 6(¥/p — v¥/p) 25 —
%K (D/p) .. = 4KC  (17h)

where V2 is the Laplacian operator and v * is the Biharmonic
operator, i.e.,

Vz( ) = ( ),:cx -+ ( ),ss (183)
V4( ) = ( ),z:c:w -+ 2( ),zxss + ( ),sus (lgb)

For a typical bay of unsupported length L the appropriate
boundary and connecting conditions between the ring and
shell are

u,s(xg,s) = 0, w (£rps) = 0 (19a,b)

v(Ear,s) = V(s), w(Fags) = W(s) (19¢,d)
1 ™ K2C A*

;‘fo N.ds = —7 m (19e)

where V and W are the circumferential and radially inward
displacement components of the ring at the line of contact
between ring and shell, 4* is the area enclosed by the oval, and
xr is the value of z at the ring, i.e.,

ar = L/2r (20)

Equations (19a,b) permit no out-of-plane warping or twist-
ing of the ring, Eqs. (19¢,d) assure identical deformations of
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the ring and the shell, and for singly symmetric shells Eq.
(19e) equates the total end load due to the hydrostatic pres-
sure ¢o to the resultant axial force in the shell at the ends a2 =
+xg.

Equations (19¢,d) imply that the circumferential strain of
both ring and shell are identical along the line of contact, i.e.,

es(xg,s) = €(s) (21)
where
els) = dV/ds — W/p (22)

Thus, Eq. (21) can be used to replace either of Eqs. (19¢,d).

The circumferential and radially inward components of the
interaction load on the ring, 8 and Z, respectively, are equal
to twice the effective in-plane and transverse shears in the
shell, because both the section of shell to the left and to the
right of the ring interact with the ring. Therefore, in non-
dimensional form

S = —2Tw/K°C, 7 = —2Qn/K*C (23a,b)
where
Tr(s) = (Ne)eti(®r,8), @r(s) = (Qz)eti(wr,s)

An analysis of nonuniform oval rings appropriate for the
present application is presented in Ref. 8.

(24a,b)

Asymptotic Solution for Shell

In accordance with Refs. 9-11, it is now assumed that the
solution has two distinct characteristic lengths. The interior
solution has a nondimensional characteristic length of order
K and the edge solution has a nondimensional characteristic
length of order 1/K. The total solution is the sum of interior
solution, the edge solution, and a particular integral.

In the asymptotic solution of Ref. 4 only the leading term
of a given quantity was retained in the final solution. This
caused results for the radial displacement to be inaccurate for
shells having circular or nearly circular cross sections. In the
present analysis certain higher order terms will be retained in
order to insure that the solution is exact for circular cylindrical
shells.

In both the interior and the edge solutions the governing
partial differential equations are the homogeneous parts of
Eqgs. (17). The homogeneous part of Eq. (17a) is integrated
twice with respect to x, and the functions of integration are
set to zero since they do not have the characteristic exponen-
tial behavior of either the interior or edge solution.

A. Interior Solution

The interior solution, identified by a superscript ¢, varies
slowly in the axial direction. A new independent variable
given by

B =ua/K (25)
is substituted into the homogeneous parts of Egs. (17), yield-
ing
(B, + 0F¥i/p) s — 20(D7/p) gg + (L/EH[2(D .+ +

6¥i/p) — 8¥/pl gg. + (1/K4) P ggep = 0 (26a)

i, — ®i/p) + (v/2K»(@ ¢ + 6¥¢/p) . +
(1/2K9®i g5 = 0 (26b)
It is assumed that differentiation with respect to either 8 or s

does not affect the order of magnitude of any of the terms.
The functions ®¢ and ¥* are assumed as

& = By + P/K2+ ..., = Vg 4 Wyi/K2 4 L
(27a,b)
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Fig. 2 Stress convention
for shell.

where
Wy = i (6‘.‘:)1‘11'(8), Vi = Y, (%)B,»(s) (28a,b)
=02 \J! i=02 \J!
v- 3 (B)ew (280)
i=0,2 \J:

and 4;, B;, C; are complex functions of s. Note that ¥ has
been expanded as a power series in both 8 and 1/K2.  The
leading terms in the above series can be expected to yield ac-
curate numerical results for short (8 <« 1), thin (1/K?2 <K 1)
shells. If Eqgs. (27) and (28) are substituted into Eqgs. (26)
and the coefficients of like powers of 8 and 1/K? are equated
to zero, the following recursive relations are obtained for A;
and B;: '

Ay = —il(pAie) + 84, 0/p]"/2;5 = 24, ... (209)

;= = (/2 (pBi-o")" + 6B,2/p]" — w/H{pllpA;-") +
A;/pV}" — (@/2){2[(pA") + 84,/p] — v[(p4;")" +
where a prime indicates ordinary differentiation with respect
to s. Thus, if Ao, Bo, Co are arbitrary complex constants, the
_ functions ®¢ and ¥+ become
Wi = Ay + (@2/2K%)As + (x4/24KHA. + (1/K®)By +
(@*/2K4B; + (1/K9Co + ... (30a)
Pt = pAy + (@/2K%)pds + (¢t/24K4pAd +
(1/K%)pBy’ — (vp/2K3)[(pAs")’ + 84o/p]’ +
(@?/2K4){pBy’ — (ivp/2)[(pdx")" + 6d2/pl'} + (1/K*)pCo’ —
(ivp/2K9) [(pBy")" + 6Bo/p]’ + (v%p/4K*){p[(pAd")" +
040/pY}"" — (1p2/2K%HAs" + ... (30b)

B. Complete Interior Solution

The sum of the interior solution and an appropriate particu-
lar integral which satisfies the nonhomogeneous governing
partial differential equations is termed the complete interior
solution. Suitable particular integrals, identified by the
superscript P, can be obtained by assuming that

uP(z,8) = cax, v2(x,8) = vP(s), wh(z,s) = wP(s) (3la,b,c)

where c; is a constant. In Ref. 15 it is shown that under the
preceding assumptions, the particular integral takes the form

Ve = Kor 4 K20(1 — 5)(1 _z —> IN 1= P)ds

2 71'7'0

2 Kﬁ 3 . o
o0K*C {2 et Q + cosf Jo &P cosfds sinf X

/2 . s s <
fs ér smﬂds} + 1K*Cp |:21/ (czfo cosdsf — fo Nds +
S (g & o
- fo Nds) + z? (p sinf + N )] (32a)
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*
&7 = K¢ pi'? + K2C(1 — ) (1 —K‘L) +
2 mre?

0K2C IV A* N + sm0f éP cosf ds -+

T, %
cosh f 2 g sinﬁds} + K¢ [xz 4 14%e

+

7'02

8x2(—1 + ¢z cosf — IV):I (32b)
where

N = —sind fos cosfds — cosf fs % Singds (33a)

- /2
Q = —cosh fos cosfds + sinofs / sinfds  (33b)

& = (1 — s cosh — (1 — N — (v2/7) fo " Nds (33c)

and 6 is the angle between the axis of symmetry and an outer
normal to the oval line of contact between ring and shell so
that

1/p = df/ds (34)

Also, 9® is a real function of s and ¢, is a real constant. Exact
formulas for 7 and ¢, appear in Ref. 15.  Their formulas have
been omitted here because they are lengthy and do not con-
tribute to the final results. Herein it is only necessary to
state that both quantities are of order of magnitude unity and
that ¢; vanishes when the shell and ring are doubly symmetric.
It is known'* that the total solutions for both ® and ¥ are
of order K* and have a slow variation in the axial direction.
The particular solution contains terms of orders K¢ K¢ and
K?  To insure a slowly varying result of the proper magni-
tude the term of order K¢ must be cancelled by the interior
solution. This is accomplished by setting A, equal to the
negative of the K®h part of v». The resulting combination
of interior and particular solutions yields the complete interior
solution.
The preceding considerations together with Eq. (32a) imply
that
— K%? (35)

Furthermore, by examining Eq. (32b) it can be concluded
that the K%h part of w? is equal to the negative of pAo’.
These statements upon consideration of Eqgs. (3, 6, 8b, 8¢, 31,
32) imply that to leading terms

1P = —[(pAy’)’ + 640/p) (36a)
(prsP')! + 6P /p = 4KCp' (36b)

Eqs. (36) are useful in simplifying the recursive relations, Eqs.
(29).

The interior solution, Egs. (30), is added to the particular
integral Eqs. (32) to obtain the following complete interior
solution:

B s
i 4 VP = [?02 + 1KCp [21} (Cg fo cosfds —
fOSZVds + ifwl\7ds> + x? (%2 sinf + ]\7’)] 4+ K2C(1 — §)
v A* s(1 — p)ds
X(l 2 7ry? )fo P B
s 7r C
cosf fo &% cosfds — sinf fs 2 ér sin0d8}+ EZ +

ix? IP+_b + [ IP:|+
1K 4K+ T 8K+

2ROty
241{ Cztp'"" (37a)

2 Eﬁ 8
aKOlZWOZQ+
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1 A*s2

, By’ L
® 4 or = M + szx, +zK4C'|:x2—l— 5 T
A*
5z*(—1 + cs cos0 — N):l + K*C(1 - 5>(1 - 5;;‘02) +

8K2*C {V A* N -+ sinf f &P cosfds +

2
cosd f 72 ér sians} + EQL :;{4 + :?“% bo +
ir JP\ !
’" 2 ~ F 6(Y o’
4sz’(s P+4K4bo +8K4[8KCP +5"< 0 ) ]+
o KiCrtop™ (37h)
where

b = — [(oBy)’ + 5Bo/p + (i/D(ox?)')  (39)

Equations (29, 35, and 36) were used to simplify Eqgs. (37).
Also, in writing Eqs. (37), sufficient terms have been retained
to insure that the leading term of any quantity will not be lost
by differentiation.

Equations (37) can now be used in conjunction with Egs.
(3, 6, 9, 14, and 15) to obtain the stresses, strains, and dis-
placements for the complete interior solution. Expressions
for some important quantities are listed below:

*
u 4 uP = ——Im(bo) 4+ K*Cr [vp _ 14T

2K
»5 <c2 cosd — I + — fo Nds )] (392)

*
vi 40P = Re(B) + K01 - 5)(1 -——*A——2> X
2 mry

A*

fo * (1 — p)ds/p — 6K2C {% -G + cos6 f & cosfds —

sind f "2 sinﬂds} (39b)

wi + wP = Re(”B"') + K20[1 e — + p(p — 1)]
T N
cop cosf + sinf f OS ér cosfds +
cosd ﬂ "2 ér sin&ds} + 2—’;{’% Im(by) (39¢)
e’ + ef = -—KZCI:p — (v/2)(A*/7rety — v26(02 cosf —

AR A ds)] ~ /2K9Im(b)  (390)

Nat + NP = Im(bo)/2K* — K20[<1/2> (A*/mred) +

- 1 T .
Va(cz cost — N + - ﬁ) Nds)] (39)

Ni+ N& = —K:Cp (39f)
(st-,i)gff + (Ns:cp)eff = sti + Nazp = K2C$P' (39g)

M.i + M7 = 3vCRe(b;)/2K* (39h)

Mg+ MF = 3CRe(by)/2K* (39i)
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Equations (33, 36, and 38) were used to simplify the preceding
results.

C. Edge Solution

The edge solution identified by a superscript e has a short
characteristic length. A new independent variable a given
by

a = Kz (40)
is substituted into the homogeneous parts of Egs. (17) yielding
P paaa — 20(P/p),aa + (1/KH[2(D, + 6¥¢/p) —

»00e/p)aas + (1/KH(D,¢ + 6%/p) c0s = 0 (41a)
B aq + 20(¥.0 — B/p) + 0/K)@,¢ + 5%/p),, =0 (41b)

It is assumed that differentiation with respect to either « or s
does not affect the order of magnitude of any of the terms.

The functions &° and e are expanded in the following
power series in 1/K?

B = P + Pyo/K2 + ... (42a)
= (/K% (¥ + ¥r/K? + ...) (42b)
where all the ®;2 and ¥, are of the same order of magnitude,
hence, We is of smaller magnitude than ®e. Substituting
Eqgs. (42) into Eqgs. (41) and equating the coefficients of like
powers of 1/K? to zero yields, for j = 0,2
Pey a0 — 20Dee/p = 0 (43a)
(®e9,00 — 2192/P) aa + 2%, a0ss = 0 (43b)
Doy 00 — 20®:0/p + (20¥ge + vDo),s = 0 (43c)
The solution of Eq. (43a) that is symmetric in z is
' . = A(s) coshh(s)z ' (44)
where
As) = (1 + )K/(p)? (45)

and A(s) is.a complex function to be determined by the
boundary conditions.

The function W is detemnned by substituting Eq. (43c)
into Eq. (43b) and integrating once with respect to « and
twice with respect to s, yielding

T = —(1/2) (28 — vy). (46)

The functions of integration have been set equal to zero since
they do not have the proper characteristic behavior of an edge
zone solution.

Equations (44-46) can be used in conjunction with Egs.
(3, 6, 9, 14, and 15) to obtain the stresses, strains, and dis-
placements for the edge solution. The leading terms of some
important quantities are listed below:

ue = p,.¢/2K% v° = v = (2 + v)¢o,*/2K* (47a,b)
W = We?, €5 = —%,22/2K2 N,¢ = —o2./2K2 (47¢,d,e)
Ne = —¢%.0/2K? (Nooers = Nu® = ¢%,./2K2  (47f8)
Mo = —3Cwe,../2K? Mo = —3vCur,../2K* (47h,1)

Mor = —3C(1 — v)woo,/2K? (Quf)etr = —w'o,z20/4K*
(473,%)

The relationship

— pWo,ezx = 2K %0, (48)

can be readily obtained from the solution, Eq. (44). Ex-
amination of Eqs. (47g, 47k, and 48) shows the following rela-
tionship, which is valid to the leading terms retained:

(Nu‘)eﬂ' = [p(Qze)eﬁ],s (49)
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Fig. 3 Longitudinal cross section of ring reinforced eylin-
der.

Solution for Ring-Reinforced Cylinder

The complete solution for a ring-reinforced cylinder is ob-
tained by combining the ring solution of Ref. 8 with the
asymptotic shell solution. The asymptotic shell solution is
the sum of the complete interior solution (Sec. B) and the edge
solution (Sec. C). The ring solution of Ref. 8 is used in
applying the boundary conditions, Egs. (19, 21, and 23).

As previously noted, the total solutions for both & and ¥
are of order K* and have a slow variation in the axial direc-
tion. Therefore, the slowly varying complete interior solu-
tion must be of order K*and the rapidly varying edge solution
must be of order K2 These considerations together with
Eqgs. (37) and (44) imply that By(s) is of order K° and A(s) is
of order K2. In addition, it can readily be shown from Eqgs.
(3d, 3f, 9a, 37, and 47k) that

(in)eff + (Q:cP)eff < (Qz’)eﬁ (50)
Equations (47k, 48, and 50) are used to write Eq. (24b) as
Qr = ¢,.°(xr,8)/2K? = Im[® .*(xr,5)]/2K%  (51)

Similarly, it can be shown that w,. also depends only on the
edge solution. Therefore, for a leading term solution, the
boundary condition (19b) becomes

w,.*(Tr,s) = Re[P *(xr,s)] =0 (52)

The combination of Egs. (51) and (52) yields the following
boundary condition for the edge solution:

D . (rr,s) = 2tK2pQr (53)

The arbitrary function A(s) in the edge solution can be ex-
pressed in terms of Qg by substituting Eq. (44) in Eq. (53).
.The edge solution then becomes

Pe = \p?Qr coshhz/sinhA\zp (54)

Consideration of Eqs. (39e) and (47e) shows that N.¢ is
negligible compared to N, + N,7; hence, the boundary con-
dition (19e) upon use of Eq. (39e) becomes

fo " Im(bo)ds = 0 ' (55)

where use was made of the following condition, which is due
to the singly symmetric geometry:

fO " cosbds = 0 (56)

The axial displacement boundary condition, Eq. (192) im-
plies that at = «z the axial displacement w is independent
of s and thus is a constant, say ¢;. Using Eqgs. (39a, 47a, and
54) implies

*
¢ = vpQr + Qx—KZ Im(by) + K?CxR[up _L1Ar

2 1r7'02

. 1 T o
VB[Cg cosf — N + - fo Nds]} (57)

Equations (56) and (57) are solved simultaneously to obtain
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ez and Im(by):
v ™ A¥*
&= = —5 l:; j; pP(s)ds + 1713702] (58a)
1 1 x
Im(by) = Kscu{;; [pP -2 _]; des] +

_ 1 T
26[02 cosd — N+ | Nds]} (58b)
where use was made of Eq. (56), and

P(s) = —2(Qr/K*C + xz) (59)

All elements of the shell solution are now either known, or
known in terms of the undetermined functions P(s) and
Re(By). These functions can be determined as follows by
satisfying the interaction conditions between the shell and
the ring.

The load on the ring acts at the ring-shell contact line,
herein called the reference line, and is due to the interaction
loads S and Z as well as to the direct action of the external
pressure q,. The loading may be written in terms of P as
follows by utilizing Eqgs. (23, 24, 39g, 47¢g, 47k, 49, 50, and
59):

Sr=8=(pP),Zr=Z+t=P+ 2+t (60a,b)

where Sz and Zr, respectively, are the total unit nondimen-
sional circumferential and radial loads on the ring, and ¢ is the
width of the ring at the reference line, nondimensionalized
with respect to ro.

The function P is determined by enforcing Eq. (21), i.e., by
requiring the circumferential strain acting on fibers along the
reference line to be the same in both the ring and the shell.
The circumferential strain acting on the reference line of the
ring can be obtained from Ref. 8. For the loading given by
Eqs. (60), this strain assumes the following functional form:

€(s) = fi(s) + fols)pP + fols) fo fs(s)pPds +
Ja(s) f()’r fo(s)pPds  (61)

where fi(s), ..., fe(s) are singly symmetric funetions of s.
Also, the last integral in Eq. (61) vanishes for doubly sym-
metric ring-shell structures.

The circumferential strain in the shell is determined from
Eqgs. (89d, 45, 47d, 54, 58b, and 59). The result at z = xp is

2
e(2r,s) = = K< P[l}— — Re(A coth)\xze):l +
2 Zr
KZC p2 T ) .
"2 TR j:) pPds + K*C [pxzzRe(A cothA\zz) +
v A*
o - 2
2 71'7'02 P] (6 )

The use of Egs. (21, 61, and 62) yields the following integral
equation for P:

pP = Fi(s) + Fao(s)J (oP) + F3(s)J(fspP) + Fa(s)J (fepP)
(63)

where
Fo(s) = —fa(s) — (K2C/2)[v?/xr — Re(\ cothhzz)] (64a)

Fo(s)F1(s) = fi(s) — K2C[pxrRe(\ cothAzr) +
' (v/2)(A*/mre?) — p] (64b)

Fo(s)Fa(s) = —(K*C/2)(v*/wr) (64c) -
Fo(8)Fs(s) = fs(s)/m Fo(s)Fu(s) = fu(s)/m  (64e)
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and J is an integral operator defined as
1 pr '
JCy == [T s (65)

The solution of Eq. (63) is obtained by first multiplying it
by 1/#, then by f5(s)/m, and finally by fs(s)/w. In each case
the equations are integrated with respect to s from 0 to .
This yields three linear algebraic equations which can readily
be solved for J(pP), J(fspP), and J(fepP). The solution for
P then follows from Eq. (63).

The only remaining undetermined function Re(Bo), which
was introduced in the interior solution, can be evaluated by
using Eq. (19¢). To this end, note that v is negligible com-
pared to the sum »i 4 v2. Therefore, substituting Eq. (39b)
into Eq. (19¢) gives

Bo\ _ _vAar
Re(ﬁ) = V(s) — K2C(1 — 9) (1 5 mz) X

o B e [P A% " o cosd —
fo 1 - p - + 8K2C lé r Q + cosl fo &P cosfds
sinf f "2 sin0ds; (66)

where V (s) is known from the ring solution of Ref. 8.

In principle all of the arbitrary functions have been deter-
mined; however, it is useful to develop the following special
formula for Re(bo), which is valid to leading terms

Re(by) = —K*[W' + 6V /p)’ (67)

Again, W(s) is known from the ring solution of Ref. 8.
The displacements and stress resultants for a thin, short,
ring-reinforced oval cylindrical shell are presented below:

j *
u(z,s) = v(oQr)Re [‘Slnh)\x] —+ KQCx[yp - —1— i. +

sinhAz g 2 7ry?

v 1 *
o (pP-— - fo des>] (68a)
v(x,s) = V(s) (68b)
w(z,s) = W(s) — p(p@r)Re[A(coshAzr — coshAz)/sinhAzr]
(68c)

KT A* v 1 pr
Ne(ws) = — =5~ [17 - ;;("P o PPdS)]

(68d)

N.(z,8) = —(pQr)Re[\ coshz/sinhAzz] — K?Cp (68e)

N.o(z,8) = Re{(pQg)’ sinhAzx/sinhAxy +
(pQr)M\p'(xr coshAzr sinhAx —
z coshAz sinh\er)/(2p sinh?haez)} + K2Czp'  (68f)

M.(z,s) = 3C(pQr)Im[\ coshAz/sinhArz] +
(BvC/2K*)Re(by) (68g)

Table 1 Comparison of Donnell and Love Solutions
for uniform doubly symmetric inside ring®

Midbay (z/2r = 0) Ring (z/ar = 1)

Are M, M M, M,
length,
s D L D L D L D L

o 127 135 ~39 —12 —434 —425 —208 —180
/8 95 98 17 -7 —297 -—294 —135 —124
/4 21 19 17 7 - 40 —43 -2 —12
37/8 —-23 =27 39 28 99 95 75 65
/2 —27 —29 49 41 115 113 91 84

e D: Donnell accuracy (6 = 0). IL: Love accuracy (8 = 1).

PRESSURIZED NONCIRCULAR CYLINDERS 1731

Fig.4 Ring for {; > 0. R—ring shell F
contact line (toe of ring), F—flange of
ring.

M. (x,8) = 3vC(pQr)Im[\ coshAz/sinhAzr] +
(3C/2K*)Re(b,) (68h)
M, (z,8) = 3C(1 — »)Im{(pQx)’ sinhAz/sinh\xr +
(pQz)Ap’(xr coshAzg sinh z —
@ coshAz sinhAzr)/(2p sinh®\zz)}  (68i)

where the quantities P, Qr, and Re(bo) are given by Eqgs. (63,
59, and 67), respectively. Formulas for the ring displace-
ments V and W may be obtained from Ref. 8.

Application

The present asymptotic solution has been applied to a shell
reinforced by tee-section rings (see Fig. 3). It is assumed
that the depth d* and flange width f* are much larger than the
flange thickness ¢,* and web thickness ¢* (corresponding un-
starred dimensions are nondimensionalized with respect to
r9). For simplicity the ring depth is assumed to vary circum-
ferentially such that the nondimensional distance 2. between
the reference line and the centroidal line is given by

2. = 5(1 + ¢; cosjs) (69)

where for a singly symmetric circumferential variationj = 1,
whereas, for a doubly symmetric variation j = 2. It is as-
sumed that —1 < {; < 1 so that the depth of the tee-section
is never zero. The condition {; = 0 corresponds to a uniform
reinforeing ring for which 2, has the constant value z,, Inside
or outside rings are distinguished by setting z, > 0 or 7, < 0,
respectively.

The reference line for the numerical examples considered is
assumed to be a doubly symmetric oval for which the local
curvature is given by

1/p = 1 4+ £ cos2s (70)

In order to avoid negative curvature, & must be restricted to
the range —1 < £ <1. A detailed discussion of the geome-
try of such ovals appears in Ref. 7, where it is shown that

A*/mr? = 1 — £2/6 + £4/240 + ... 1)

* The examples considered have doubly symmetric (j = 2),
inside (2, > 0) tee-sections with £ = 0.3891, 2z = 0.1309, f =
0.08071, h/ry = 0.01091, ¢ = ¢, = 0.004818. With 2, =

1000 |
$.=08 |
/
500 ,/ 7
4
W
«
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0.06545 and {; = 0 this data corresponds to case 3 of Ref. 4.
In the present work, rings having values of {» = 0, ==0.6 are
considered. The volume (hence the weight) of the rings is
kept constant by adjusting %, when changing {». A typical
" ring for {3 > 0 is depicted in Fig. 4. Negative values of {,
correspond to a ring which is thicker at the minor axis than
the major axis.

Discussion

The tracer constant & was introduced into the equations in
order to keep account of terms commonly omitted in Donnell
type equations. However, after checking the solution, Egs.
(68), it can be seen that the only place where & appears is
through the function Re(b,) [see Eq. (67)]. Therefore, it may
be concluded that all quantities in the asymptotic solution
may be adequately described by the simple Donnell equations,
with the possible exception of the axial bending moment 3,
and circumferential bending moment M, [since both Eq. (68g)
for M, and Eq. (68h) for M, contain Re(by)]. Examining the
results of Table 1 shows that Donnell theory can be used to
prediet the axial bending moment to a good degree of accuracy
while giving only a fair indication of the circumferential bend-
ing moment. However, note that the circumferential bend-
ing moment is small compared to the axial bending moment.

It is shown in Ref. 16 that the maximum stress in the ring-
shell structure is the stress in the flange of the ring. Figure 5
shows that for doubly symmetric inside rings the maximum
flange stress can be reduced by adjusting (-, i.e., by appro-
priately varying the depth while maintaining the volume con-
stant. In Ref. 16 it is shown that a similar reduction also
oceurs for doubly symmetric outside rings.

Examination of Fig. 6 shows that for the cases considered
{2 = —0.6 is an optimal value which minimizes the magnitude
of the maximum flange stress. This value yields a structure
having a maximum flange stress 219, lower than a structure
having a uniform ring.
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