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Asymptotic Solution for Pressurized Noncircular
Cylinders with Nommiform Rings

JOSEPH E. FLAHERTY*
New York University, New York, N.Y.

AND
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Polytechnic Institute oj Brooklyn, Brooklyn, N. Y.

An asymptotic expansion procedure is used to analyze hydrostatically loaded noncircular
cylindrical shells. The asymptotic solution is combined with a solution for singly symmetric
oval rings with variable cross-sectional properties to obtain the solution for pressurized non-
circular cylinders with nonuniform rings. Numerical results indicate that the maximum
stress in the ring-shell structure can be significantly reduced by appropriately varying the
ring depth while keeping the total volume constant.
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Nomenclature

area enclosed by oval
complex functions of s, see Eqs. (44, 28a-c, and

38), respectively
[3(1 - >>*)} -1/2

constants
depth and flange width of tee-section ring, re-

spectively
Young's modulus of shell
axial, circumferential, and shear strains of the

median surface of the shell
function denned by Eq. (33c)
functions of s denned by Eqs. (64)
functions of s, see Eqs. (61)
shell thickness

integral operator defined by Eq. (65)
integers
parameter defined by Eq. (4b)
circumferential and axial lengths of the shell,

respectively
axial, circumferential, and twisting moment re-

sultants, respectively, in the shell
axial, circumferential, and in-plane shear stress

resultants, respectively, in the shell
functions defined by Eqs. (33a,b), respectively
function defined by Eq. (59)
complex functions defined by Eqs. (11)

effective transverse shear and in-plane shear in
shell

values of (Qx)ett and (N8X)ett at x = XR, respec-
tively

uniform hydrostatic pressure
local radius of curvature of reference line

shear and radial interaction forces acting upon
reference line of ring, respectively
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total shear and radial forces acting on reference
line of the ring, respectively

thickness of web and flange of ring, respectively
axial, circumferential, and radially inward dis-

placement components of any point in the
shell

circumferential and radially inward displace-
ment components of a point on the reference
line of the ring, respectively

function of s, see Eqs. (32)
axial, circumferential, and radial coordinates of

a point in the shell
L/2r0
location of centroid of ring
value of zc for tee-section of uniform depth
axial coordinates equal to Kx and x/K, respec-

tively
tracer constant
strain of a fiber along the reference line of the

ring
parameter used to specify the variation of zc,

see Eq. (69)
angle between axis of symmetry and outer nor-

mal to reference line
curvature parameters of shell
complex function of s defined by Eq. (45)
Poisson's ratio
parameter that fixes the eccentricity of oval
r/r0
axial, circumferential, and in-plane shear

stresses, respectively, in the shell
complex functions defined by Eqs. (14)
imaginary parts of <£ and S£, respectively
dimensional counterpart of ( )
particular, interior, and edge part of ( )
complex conjugate of ( )

( )' = d( )/ds
( ),« = b( )/da
Re( ),Im( ) = real and imaginary parts of ( ), respectively

Introduction

INVESTIGATIONS of the design and fabrication of sub-
mergence vehicles has led to a study of noncircular ring-

reinforced cylindrical shells. In this connection, the case of
a noncircular cylinder with uniform reinforcing rings was
analyzed by both an energy approach,1 in which energy solu-
tions for an oval cylinder2 and an oval ring3 were combined,
and by an asymptotic series approach.4 These two ap-
proaches were in good agreement with available experimental
results.5-6
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Fig. 1 Ring-reinforced oval cylinder.

In addition to assuming that the cross-sectional properties
of both ring and shell are uniform, the theoretical work of
Refs. 1-5 assumes that the oval is doubly symmetric and has
the special mathematical form discussed in Ref. 7. In the
present work an asymptotic expansion procedure is applied to
a hydrostatically loaded oval cylindrical shell with nonuni-
form reinforcing rings. The analysis considers arbitrary
singly or doubly symmetric ovals of slow circumferential vari-
ation. The shell solution is combined with an appropriate
ring solution8 to obtain the complete solution for a typical bay
of a long noncircular cylinder reinforced by many closely
spaced nonuniform rings (see Fig. 1). Numerical results
indicate that the maximum stress in the ring-shell structure
can be significantly reduced by appropriately varying the ring-
depth while keeping the total volume constant.

The asymptotic expansion procedure, introduced9 and later
extended10 by E. Reissner, is applicable to thin shells sub-
jected to loads having a slow circumferential variation.
More recently, Reissner and Simmonds11 have removed the
restriction of slow circumferential variation. The general
procedure9"11 for obtaining solutions to the governing partial
differential equations of thin shell theory is similar in many
respects to that proposed by GoPdenveizer.12

Governing Equations and Boundary Conditions

In the present analysis, it is assumed that the behavior of
the cylindrical shell shown in Fig. 1 can be described by dif-
ferential equations of the Love type. A tracer is used to keep
account of the terms usually omitted in the more simple equa-
tions of the Donnell type. These equations can be cast into
a complex form which is concise and has the advantage of
halving the order of the governing partial differential equa-
tions.

In accordance with Love's approximations, the stresses are
assumed to vary linearly through the shell wall of uniform
thickness h, hence

{er,,<r.,er.,} = {NX,N.,N.,} + (2z*/h){Mx,M.,M.x] (1)

where z* is a radially inward coordinate measured from the
median surface of the shell. The quantities ax, Nx, arid Mx
represent the total nondimensional axial stress, axial mem-
brane stress, and axial bending stress, respectively. They are
related to their corresponding dimensional quantities ax*,
Nx*, and Mx* by

o-x = (rx*/qo, Nx = Nx*/q0h, Mx = Mx*/q<>h* (2a,b,c)

where q0 is the applied uniform external pressure. Similar
expressions with subscripts s and sx represent circumferential
and in-plane shear quantities, respectively (see Fig. 2). Here
and in what follows, an asterisk is used to denote a physical
rather than a nondimensional quantity.

The nondimensional membrane and bending stresses are
related to the median surface strain parameters ex, es, esx, and

curvature parameters xx, xs, xsx by the equations

Nx = 3C2(ex + ve,), N8 = 3C2(es + vex) (3a,b)
Nsx = Nxs = 3C2(1 - v)esx/2 (3c)

Mx = -3C(xx + vxs}/2K*, Ms = -3C(xs + vxx)/2K*
(3d,e)

Msx = -Mxs = -30(1 - v)xsx/2K* (3f)
where v is Poissons' ratio and K and C are defined as

C = [3(1 - *>2)]-1/2, #2C = r»/h (4a,b)
Here, r0 is the radius of a reference circle whose circumference
Z/o is equal to the length of the median line of the shell. The
strain and curvature parameters are related to the coorespond-
ing physical quantities as follows:

{ex,e,,e8x,xx,Xs,XsX} = E*{ex*,es*,esx*,r0xx*,r0xs*,roxsx*}/qo (5)

where E* is Young's modulus of the shell.
The median surface strains and curvatures are related to

the nondimensional axial, circumferential, and radially inward
median surface displacement components u, v, w, respectively,
by the expressions

ex = u,x, es = v,s — w/p, esx = u,

KX = w,xx, KS = (w,s + 5v/p),S) HSX = (w,s +
(6a,b,c)

(6d,e,f)

where x and s are nondimensional axial and circumferential
median surface coordinates (see Fig. 1), p is the nondimen-
sional circumferential local radius of curvature of the shell
median surface, d is a tracer constant which is unity for Love
type equations and zero for Donnell type equations, and a
comma indicates differentiation with respect to the variable
which it precedes. The nondimensional quantities are re-
lated to their dimensional counterparts by

{x,s,p} = u,v,w = (7a,b)

The use of the theorem of the minimum of the total poten-
tial together with Eqs. (3) and (6) yields the following equi-
librium equations for the shell:

NXtX + Nsx,s = 0
Ns,s + Nsx,x - d(2MSXtX + 7lfs,

Mx,xx + 2MSX,SX + Ms>ss

(8a)
= 0 (8b)

6#4C2 (8c)

The nondimensional effective shear stresses, which arise in the
minimum principle and are to be used as natural boundary
conditions, are

(Q,)eff = (MXtX + 2MSX,S)/6K*C (9a)
CAT«)eff = Nsx - 5Msx/3K*Cp (9b)

where (Qx)eff and (Nsx)eft have been nondimensionalized by
equations similar to Eq. (2b).

The system of equilibrium equations as well as the following
compatibility conditions can also be obtained by specializing
equations presented by Novozhilov13 for arbitrary shells re-
ferred to curvature coordinates:

*s,z - xsx,s = 0 (lOa)

X*.* - ***,* + 8(e,ttX - ex,s)/p = 0 (lOb)
es,xx - eSXtSX + ex,ss + xx/p = 0 (lOc)

The preceding system of differential equations can be writ-
ten in a complex form by using the static-geometric analogy
introduced into shell theory by Gordenveizer.12 Following
Naghdi,14 this is accomplished by introducing the following
complex functions:

Px = Nx + ix,/2K*, Ps = Ns + ixx/2K2
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= Nsx - ix,x/2K*, Rx = Mx + 3iCes

= Ms + 3iCex, 2RSX = 2MSX - 3iCesx

where i = ( — 1)1/2. The equations of compatibility, Eqs.
(10), are now multiplied by i/2K2 and the results added to
the equilibrium equations, Eqs. (8). This yields, upon use of
Eqs. (11),

PXtX + P..,. = 0 (12a)
Ps,s + Psx,x - 5(2RSX,X

Rx>xx + 2RSX,SX + Rs,ss +

= 0 (12b)
6#4<72 (12c)

The real and imaginary parts of the preceding equations yield
the equilibrium equations and compatibility equations, re-
spectively.

The quantities PXJ P8, Psx and Rx, Rs, Rsx are not all inde-
pendent of each other but are related as follows through
Hooke's Laws, Eqs. (3) :

Rx = 3iC(Ps - vPx), Rs = 3iC(Px - vPs) (13a,b)
Rsx = -3iC(Psx + vPsx) (13c)

where a bar over a quantity denotes its complex conjugate.
It is convenient in the present analysis to introduce com-

plex functions <£ and ^f defined such that

<£ = w + i<p, SF = v + i\f/
where <p and \f/ satisfy

Nx = -(l/2K*)(<P,s + WP),., Ns = ~

Nsx =

(14a,b)

(15a,b)

(15c)
The use of Eqs. (6d-f, lla-c, 14, and 15) shows that Px, Ps, Psx
are related to <£ and ^ by

Px = Ps =
Psx = -(i

$,« (16a,b)

(16c)
Thus Eq. (12a) is satisfied identically. Equations (13) and
(16) are used to reduce Eqs. (12b,c) to the following two
equations for the two unknowns <f> and ^:

(17a)

3V
= 4#6(7 (17b)

where V2 is the Laplacian operator and V4 is the Biharmonic
operator, i.e.,

V2( ) =
V4( ) = ( )?« 2( ),S5SS

(18a)
(18b)

For a typical bay of unsupported length L the appropriate
boundary and connecting conditions between the ring and
shell are

U,s(±XR,s) 0, W,X(±XR,8) = 0

Sj, W\^XR)S) = W \S)

=,. K*c A*
2i 7T7*o

(19a,b)

(19c,d)

(19e)

where V and W are the circumferential and radially inward
displacement components of the ring at the line of contact
between ring and shell, A * is the area enclosed by the oval, and
XR is the value of x at the ring, i.e.,

XR = L/2rQ (20)
Equations (19a,b) permit no out-of-plane warping or twist-

ing of the ring, Eqs. (19c,d) assure identical deformations of

the ring and the shell, and for singly symmetric shells Eq.
(19e) equates the total end load due to the hydrostatic pres-
sure g0 to the resultant axial force in the shell at the ends x ~

Equations (19c,d) imply that the circumferential strain of
both ring and shell are identical along the line of contact, i.e.,

where

es(xR,s) = e(s)

€(S) = dV/ds - W/p

(21)

(22)

Thus, Eq. (21) can be used to replace either of Eqs. (19c,d).
The circumferential and radially inward components of the

interaction load on the ring, S and Z, respectively, are equal
to twice the effective in-plane and transverse shears in the
shell, because both the section of shell to the left and to the
right of the ring interact with the ring. Therefore, in non-
dimensional form

S = -2TR/K*C, Z = -2QR/K*C

where

TR(s) = )s), QR(s) =

(23a,b)

(24a,b)

An analysis of nonuniform oval rings appropriate for the
present application is presented in Ref. 8.

Asymptotic Solution for Shell

In accordance with Refs. 9-11, it is now assumed that the
solution has two distinct characteristic lengths. The interior
solution has a nondimensional characteristic length of order
K and the edge solution has a nondimensional characteristic
length of order l/K. The total solution is the sum of interior
solution, the edge solution, and a particular integral.

In the asymptotic solution of Ref. 4 only the leading term
of a given quantity was retained in the final solution. This
caused results for the radial displacement to be inaccurate for
shells having circular or nearly circular cross sections. In the
present analysis certain higher order terms will be retained in
order to insure that the solution is exact for circular cylindrical
shells.

In both the interior and the edge solutions the governing
partial differential equations are the homogeneous parts of
Eqs. (17). The homogeneous part of Eq. (17a) is integrated
twice with respect to x, and the functions of integration are
set to zero since they do not have the characteristic exponen-
tial behavior of either the interior or edge solution.

A. Interior Solution

The interior solution, identified by a superscript i, varies
slowly in the axial direction. A new independent variable
given by

ft = x/K (25)

is substituted into the homogeneous parts of Eqs. (17), yield-
ing

0 (26a)

$\^ = 0 (26b)

It is assumed that differentiation with respect to either ft or s
does not affect the order of magnitude of any of the terms.
The functions <£* and ̂  are assumed as

(27a,b)
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Fig. 2 Stress convention
for shell.

where

,b)

(28c)

and Ay, .By, Cy are complex functions of s. Note that ̂  has
been expanded as a power series in both ft and l/K2. The
leading terms in the above series can be expected to yield ac-
curate numerical results for short (ft <3C 1), thin (1/K2 <3C 1)
shells. If Eqs. (27) and (28) are substituted into Eqs. (26)
and the coefficients of like powers of ft and 1/K2 are equated
to zero, the following recursive relations are obtained for Aj
and BJ :

Aj = -i[(pAy_2')' + 8Aj_*/p]"/2',j = 2,4, . . . (29a)

• By = -(i/2)[(pBy-2')' + 6£;_2/p]" - ("/4){p[(p4y-a') +

2&4y/p]} j = 2,4, . . . (29b)

where a prime indicates ordinary differentiation with respect
to s. Thus, if AQ, BQ, CQ are arbitrary complex constants, the
functions <£*' and Sf^ become

(l/K2)BQ

(30a)

(30b)

B. Complete Interior Solution

The sum of the interior solution and an appropriate particu-
lar integral which satisfies the nonhomogeneous governing
partial differential equations is termed the complete interior
solution. Suitable particular integrals, identified by the
superscript P, can be obtained by assuming that

up(x,s) = cix, vp(x,s) = vp(s), wp(x,s) = wp(s) (31a,b,c)

where Ci is a constant. In Ref. 15 it is shown that under the
preceding assumptions, the particular integral takes the form

\ f'
2/ J°

p)ds

5K2C ^ —— - Q cos6>

2 TTfoV J u P

ep cosj?(fe - sin(9 X

+ iK*Cp 2v (c2 f

*- fj Nds

- f * Nds

(32a)

pv'p - 5) l - ~

«Hi-.*-(2 7rr0
2

cos0 f *" 2 ep sinflds

ep cos0 ds +

1 A*s2

2 TTT-o2

5a;2(-l (32b)

where
/» S /* 7T/2

= — sin0 I cosOds — cos0 I sinBds (33a)

I
JO

= — cos0 I cosdds + sin# /;72

C *«/ o

(33b)

(33c)

and 6 is the angle between the axis of symmetry and an outer
normal to the oval line of contact between ring and shell so
that

1/p = dd/ds (34)
Also, vp is a real function of s and c2 is a real constant. Exact
formulas for vp and c2 appear in Ref. 15. Their formulas have
been omitted here because they are lengthy and do not con-
tribute to the final results. Herein it is only necessary to
state that both quantities are of order of magnitude? unity and
that c2 vanishes when the shell and ring are doubly symmetric.

It is known1'4 that the total solutions for both $ and ̂  are
of order K* and have a slow variation in the axial direction.
The particular solution contains terms of orders K&, K*, and
K2. To insure a slowly varying result of the proper magni-
tude the term of order K6 must be cancelled by the interior
solution. This is accomplished by setting AQ equal to the
negative of the KQih part of vp. The resulting combination
of interior and particular solutions yields the complete interior
solution.

The preceding considerations together with Eq. (32a) imply
that

A0 = -KV (35)

Furthermore, by examining Eq. (32b) it can be concluded
that the J£6th part of wp is equal to the negative of pAQ'.
These statements upon consideration of Eqs. (3, 6, 8b, 8c, 31,
32) imply that to leading terms

xf = - [(pAoO'H- Mo/p]' (36a)
(pxf'Y + 8x,p'/p = 4K*Cp' (36b)

Eqs. (36) are useful in simplifying the recursive relations, Eqs.
(29).

The interior solution, Eqs. (30), is added to the particular
integral Eqs. (32) to obtain the following complete interior
solution:

cosdds —

h - f " N d s ] + ^2 f - sin(9 + 7?' )1
7 T J O / \p /J

- 2- -.) f;^^ - w2 7rr0
2/ Jo p

- 8)

« — o Q +

•vr/2
f S ep cosdds - smd f * ' ~ ep smdds} + ̂  +

J O J S I K *

4̂ "2
a;2

8^
7/ /p~l

'(2 + ,) + ,5^J +

^K*CxY" (37a)
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— 1 + c2 cos0 - N) + K2C(l

Iv A* ~ r*dK2C I --^ N + sin0 J

/••7T/2

COS0

where

(37b)

(38)

Equations (29, 35, and 36) were used to simplify Eqs. (37).
Also, in writing Eqs. (37), sufficient terms have been retained
to insure that the leading term of any quantity will not be lost
by differentiation.

Equations (37) can now be used in conjunction with Eqs.
(3, 6, 9, 14, and 15) to obtain the stresses, strains, and dis-
placements for the complete interior solution. Expressions
for some important quantities are listed below :

vS c2 cose - N + - Cj fids \\ (39a)

- p)ds/p - —— 2 Q + cos<9 f s ep
Z TTTQ J 0

sin0 f*72 ep sinOds] (39b)

wi 4- wp =

c2p cos0 + sin0 fj o ep cosOds

COS0
r/2

es p -

i r
7T JO

smdds] + --/m(60) (39c)*

COS0 ~

(39d)

f c2 cos0 - N + ~ fj Nds\\ (39e)

Ns
p = -

-P Jlf ,p = 3vCRe(bQ)/2K*

< + M.P = ZCRe(b0)/2K*

(39f)

' (39g)

(39h)

(39i)

Equations (33, 36, and 38) were used to simplify the preceding
results.

C. Edge Solution

The edge solution identified by a superscript e has a short
characteristic length. A new independent variable a given
by

a - Kx (40)

is substituted into the homogeneous parts of Eqs. (17) yielding

(^,/ + W-/P),... = 0 (41a)
»)(*,.• + 5^/p),. = 0 (41b)

It is assumed that differentiation with respect to either a or s
does not affect the order of magnitude of any of the terms.

The functions $e and ^fe are expanded in the following
power series in l/K2

& = $0e + <$>?/&* + . . . (42a)

*• = (l/^2)(^oe + **e/K* + . . .) (42b)
where all the $/ and ^fje are of the same order of magnitude,
hence, ^fe is of smaller magnitude than <i>e. Substituting
Eqs. (42) into Eqs. (41) and equating the coefficients of like
powers of l/K2 to zero yields, for j = 0,2

» = 0 (43a)

23>\aass = 0 (43b)

+ "$o,se),s = 0 (43c)
The solution of Eq. (43a) that is symmetric in x is

<3>oc = A(s) coshX(s)o; (44)

where
. . - . . X(«) = ( 1 +i)K/(pY'2 (45)

and A(s) is a complex function to be determined by the
boundary conditions.

The function "$V is determined by substituting Eq. (43c)
into Eq. (43b) and integrating once with respect to a and
twice with respect to s, yielding

\fr0e = _ (i/2)(2$Qe — ^$0e),« (46)

The functions of integration have been set equal to zero since
they do not have the proper characteristic behavior of an edge
zone solution.

Equations (44-46) can be used in conjunction with Eqs.
(3, 6, 9, 14, and 15) to obtain the stresses, strains, and dis-
placements for the edge solution. The leading terms of some
important quantities are listed below:

Ue = v<p0tX*/2K2, v*
w* =

.' = -<p\xx/2K2, (AT.,Oeif = Nsx*
j|fx. = -3Cw\xx/2K2, Ms = -

Msx« = ~3C(1 - v)w\sx/2K2, (Q,-

The relationship

(2 + v)<p0,se/2K2 (47a,b)
(47c,d,e)

(47f,g)
(47h,i)

(47j,k)

(48)

can be readily obtained from the solution, Eq. (44). Ex-
amination of Eqs. (47g, 47k, and 48) shows the following rela-
tionship, which is valid to the leading terms retained:

(49)



1730 J. E. FLAHERTY AND W. P. VAFAKOS AIAA JOURNAL

77771 F77/

REFERENCE
and Im(b0):

—CENTROIDAL
LINE OF RING

I—f-]
Fig. 3 Longitudinal cross section of ring reinforced cylin-

der.

Solution for Ring-Reinforced Cylinder

The complete solution for a ring-reinforced cylinder is ob-
tained by combining the ring solution of Ref. 8 with the
asymptotic shell solution. The asymptotic shell solution is
the sum of the complete interior solution (Sec. B) and the edge
solution (Sec. C). The ring solution of Ref. 8 is used in
applying the boundary conditions, Eqs. (19, 21, and 23).

As previously noted, the total solutions for both $ and ̂
are of order K* and have a slow variation in the axial direc-
tion. Therefore, the slowly varying complete interior solu-
tion must be of order K* and the rapidly varying edge solution
must be of order K2. These considerations together with
Eqs. (37) and (44) imply that B0(s) is of order K* and A(s) is
of order K2. In addition, it can readily be shown from Eqs.
(3d, 3f, 9a, 37, and 47k) that

(QxOeff + (QxP)eff « (Q*e)eff (50)

Equations (47k, 48, and 50) are used to write Eq. (24b) as

QR = <p,**(xR)s)/2K*p = Im[$>x*(xR,s)]/2K*p (51)

Similarly, it can be shown that w,x also depends only on the
edge solution,. Therefore, for a leading term solution, the
boundary condition (19b) becomes

w,xe(xR,s) = Re[$tX*(xR,s)] = 0 (52)

The combination of Eqs. (51) and (52) yields the following
boundary condition for the edge solution:

The arbitrary function A(s) in the edge solution can be ex-
pressed in terms of QR by substituting Eq. (44) in Eq. (53).

> The edge solution then becomes

coshXz/sinhXa;/? (54)

Consideration of Eqs. (39e) and (47e) shows that Nx
e is

negligible compared to Nx* + Nx
p; hence, the boundary con-

dition (19e) upon use of Eq. (39e) becomes

rJo Im(b0)ds = 0 (55)

where use was made of the following condition, which is due
to the singly symmetric geometry:

fJo cosBds = 0 (56)

The axial displacement boundary condition, Eq. (19a) im-
plies that at x = x R the axial displacement u is independent
of s and thus is a constant, say c3. Using Eqs. (39a, 47a, and
54) implies

-4 7m(60)

c2 cos0 - N + - fj Nds]\ (57)

Equations (56) and (57) are solved simultaneously to obtain

c3 = - pi f-
LTT JO PP(s)ds A*

*W0
2] (58a)

7ra(&0) -\pP -± (" pPds~\ +
XR L TT JO J

25 c2 cos0 - N + - C " Nds\ \ (58b)

(59)

where use was made of Eq. (56), and

P(s) = -2(QR/K*C + xs)
All elements of the shell solution are now either known, or

known in terms of the undetermined functions P(s) and
Re(BQ). These functions can be determined as follows by
satisfying the interaction conditions between the shell and
the ring.

The load on the ring acts at the ring-shell contact line,
herein called the reference line, and is due to the interaction
loads S and Z as well as to the direct action of the external
pressure q0. The loading may be written in terms of P as
follows by utilizing Eqs. (23, 24, 39g, 47g, 47k, 49, 50, and
59):

ST = S = (pP)', ZT = Z + t = P + 2xR + t (60a,b)
where ST and ZT, respectively, are the total unit nondimen-
sional circumferential and radial loads on the ring, and t is the
width of the ring at the reference line, nondimensionalized
with respect to r0.

The function P is determined by enforcing Eq. (21), i.e., by
requiring the circumferential strain acting on fibers along the
reference line to be the same in both the ring and the shell.
The circumferential strain acting on the reference line of the
ring can be obtained from Ref. 8. For the loading given by
Eqs. (60), this strain assumes the following functional form:

Ms)

(61)

where /i(s), . . ., /e(s) are singly symmetric functions of s.
Also, the last integral in Eq. (61) vanishes for doubly sym-
metric ring-shell structures.

The circumferential strain in the shell is determined from
Eqs. (39d, 45, 47d, 54, 58b, and 59). The result at x = XR is

^ —— f '
2 7TXR JO

— - Re(\

+ K*C \pxRRe(\

- <«
The use of Eqs. (21, 61, and 62) yields the following integral

equation for P :
pP =

where

Ft(s)J(pP)

Ms) - (K*C/2)[v*/xB - Re(\

fi(s) - K*C[pxRRe(\ cothXa;«)

(63)

(64a)

F0(s)Fi(s)

(64c)

(64e)



SEPTEMBER 1971 PRESSURIZED NONCIRCULAR CYLINDERS 1731

and J is an integral operator defined as

(65)

The solution of Eq. (63) is obtained by first multiplying it
by I/TT, then by /6(s)/V, and finally by MS) /IT. In each case
the equations are integrated with respect to s from 0 to ir.
This yields three linear algebraic equations which can readily
be solved for J(pP), J(f6pP), and J(frpP). The solution for
P then follows from Eq. (63).

The only remaining undetermined function Re(B0), which
was introduced in the interior solution, can be evaluated by
using Eq. (19c). To this end, note that v< is negligible com-
pared to the sum vi + v*. Therefore, substituting Eq. (39b)
into Eq. (19c) gives

/os (1 - p) f + Q + cos0 |n'S ep cosOds -

v/2
sin0 ep sindds \ (66)

where V(s) is known from the ring solution of Ref. 8.
In principle all of the arbitrary functions have been deter-

mined; however, it is useful to develop the following special
formula for Re(b0), which is valid to leading terms

Re(b0) = - (67)

Again, W(s) is known from the ring solution of Ref. 8.
The displacements and stress resultants for a thin, short,

ring-reinforced oval cylindrical shell are presented below:

V(xt8) = V(s)
w(x,s) = W(s) — p(pQR)Re[\(cosh\xR —

£-.(*- IT ft**)] (88.)

(68b)

(68c)

2 L7T7*o2 XR \ TT J 0

(68d)

Ns(x,s) = -(pQfl)#e[X coshXz/sinhXz/j] - K*Cp (68e)

(pQfl)Xp'(Zfl coshX## sinhXx —
x coshXx sinhX£fl)/(2p sinh2Xo;/e)} + K2Cxpf (68f)

MX(XJS) — 3C(pQR)Im[\ coshXa^/sinhXa'/j] +
fte(b0) (68g)

Table 1 Comparison of Donnell and Love Solutions
for uniform doubly symmetric inside ring0

Midbay (X/XR = 0)

Arc

0
7T/8

7T/4

37T/8

7T/2

M

D

127
95
21

-23
-27

z

L

135
98
19

-27
-29

M.

D

-39
-17

17
39
49

L

-12
-7

7
28
41

Ring (X/XR = 1)

A

D

-434
-297
-40

99
115

fx

L

-425
-294
-43

95
113

D

-208
-135

-2
75
91

M,

L

-180
-124
-12

65
84

Fig. 4 Ring for ft > 0. JR—ring shell
contact line (toe of ring), F—-flange of

ring.

M8(x,s) = 3vC(pQR)Im[\
(68h)

M8,(o;,s) = 3C(1 -

x coshX# sinhX#/z)/(2p sinh2Xa;«)} (68i)
where the quantities P, QR) and Re(bQ) are given by Eqs. (63,
59, and 67), respectively. Formulas for the ring displace-
ments V and W may be obtained from Ref. 8.

Application

The present asymptotic solution has been applied to a shell
reinforced by tee-section rings (see Fig. 3). It is assumed
that the depth d* and flange width/* are much larger than the
flange thickness tf* and web thickness t* (corresponding un-
starred dimensions are nondimensionalized with respect to
r0). For simplicity the ring depth is assumed to vary circum-
ferentially such that the nondimensional distance 2C between
the reference line and the centroidal line is given by

2C =» 2o(l + f 3 cosjs) (69)
where for a singly symmetric circumferential variation,?' = 1,
whereas, for a doubly symmetric variation j = 2. It is as-
sumed that — 1 < f j < 1 so that the depth of the tee-section
is never zero. The condition £,• = 0 corresponds to a uniform
reinforcing ring for which 2C has the constant value 20- Inside
or outside rings are distinguished by setting 20 > 0 or 20 < 0,
respectively.

The reference line for the numerical examples considered is
assumed to be a doubly symmetric oval for which the local
curvature is given by

1/p cos2s (70)

In order to avoid negative curvature, £ must be restricted to
the range — 1 < £ < 1. A detailed discussion of the geome-
try of such ovals appears in Ref. 7, where it is shown that

• The examples considered have doubly symmetric (j = 2),
inside (ZQ > 0) tee-sections with £ = 0.3891, XR = 0.1309, / =
0.08071, h/r* = 0.01091, t - tf = 0.004818. With 20 =

1000

Fig. 5 Stress in
flange of ring.

a D: Donnell accuracy (5 = 0). L: Love accuracy (6 = 1).
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^

-0
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4
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c

^x

)

^

0

^^

4 0.

Fig. 6 Maximum
stress in flange of

ring vs ft-

0.06545 and f 2 = 0 this data corresponds to case 3 of Ref. 4.
In the present work, rings having values of f2 = 0, ±0.6 are
considered. The volume (hence the weight) of the rings is
kept constant by adjusting z0 when changing f2. A typical
ring for f2 > 0 is depicted in Fig. 4. Negative values of f2
correspond to a ring which is thicker at the minor axis than
the major axis.

Discussion

The tracer constant d was introduced into the equations in
order to keep account of terms commonly omitted in Donnell
type equations. However, after checking the solution, Eqs.
(68), it can be seen that the only place where 6 appears is
through the function Re(b0) [see Eq. (67) ]. Therefore, it may
be concluded that all quantities in the asymptotic solution
may be adequately described by the simple Donnell equations,
with the possible exception of the axial bending moment Mx
and circumferential bending moment Ms [since both Eq. (68g)
for Mx and Eq. (68h) for Ma contain Re(b0) ]. Examining the
results of Table 1 shows that Donnell theory can be used to
predict the axial bending moment to a good degree of accuracy
while giving only a fair indication of the circumferential bend-
ing moment. However, note that the circumferential bend-
ing moment is small compared to the axial bending moment.

It is shown in Ref. 16 that the maximum stress in the ring-
shell structure is the stress in the flange of the ring. Figure 5
shows that for doubly symmetric inside rings the maximum
flange stress can be reduced by adjusting £2, i.e., by appro-
priately varying the depth while maintaining the volume con-
stant. In Ref. 16 it is shown that a similar reduction also
occurs for doubly symmetric outside rings.

Examination of Fig. 6 shows that for the cases considered
f2 = —0.6 is an optimal value which minimizes the magnitude
of the maximum flange stress. This value yields a structure
having a maximum flange stress 21% lower than a structure
having a uniform ring.
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